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The resonance frequencies and oscillation phases of three acoustically coupled bubbles are examined to
show that avoided crossings can appear in a multibubble system. Via a simple coupled oscillator model, we
show that if at least three bubbles exist, it is possible for their resonance frequencies as functions of the
separation distances between the bubbles to experience an avoided crossing. Furthermore, by focusing our
attention on the oscillation phases and based on analysis of the transition frequencies �M. Ida, Phys. Lett. A
297, 210 �2002�; J. Phys. Soc. Jpn. 71, 1214 �2002�� of the coupled bubbles, we show that a distinct state
exchange takes place between the bubbles at a point in the avoided crossing region, where a resonance
frequency of the triple-bubble system crosses with a transition frequency not corresponding to the resonance
frequencies.
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I. INTRODUCTION

Avoided crossings �1� have been observed theoretically
and experimentally in a large variety of physical systems
involving eigenvalues �e.g., natural frequencies, eigenener-
gies� �2–15�, and they have attracted much attention even in
recent years because of their rich physics and practical im-
portance in, for example, mechanical engineering �11–14�
and quantum physics �2–5�. In the avoided crossing regions,
eigenvalues of the system first approach each other as a sys-
tem parameter is varied but then veer abruptly from each
other without crossing. In those regions a drastic change of
some characteristic of the system occurs along the eigen-
value loci. In Ref. �12�, for example, Pierre illustrated that
the mode shapes of a disordered chain of coupled pendulums
change in the regions where avoided crossings of the eigen-
frequencies of the system take place. In that study, disorders
in the lengths of the pendulums were used as the system
parameters. Also, in Ref. �2�, Walkup et al. studied in detail
avoided crossings observed in the energy levels of diamag-
netic hydrogen as functions of the magnetic field strength or
the angular momentum, which lead to the diabatic exchange
of the states of the wave functions. A study of Bose-Einstein
condensation �BEC� �5� showed that in order to trap mol-
ecules created in an atomic BEC through a Feshbach reso-
nance, an avoided crossing of two bound states of the mol-
ecules must be exploited, through which the vibrational
quantum number and size of the trapped molecules change.

In the present paper, we show theoretically that avoided
crossings can be observed in acoustically coupled bubbles,
which has to the authors’ knowledge not been stated in the
literature. Furthermore, based on analyses of transition fre-
quencies �16,17�, we propose a way to detect a state ex-
change occurring in the avoided crossing region. The theo-
retical model used in this study, reviewed in Sec. II, is a
forced coupled oscillator model that describes acoustic cou-
pling of pulsating bubbles. Using the model, we show in Sec.
III that if at least three bubbles exist, it is possible that the

resonance frequencies of the bubbles exhibit an avoided
crossing when they are plotted as functions of the separation
distances between the bubbles. As has been demonstrated
�e.g., Refs. �16,18��, in double-bubble systems, neither cross-
ings nor avoided crossings of the resonance frequencies as
functions of the separation distance are observed, since the
higher of the two resonance frequencies of the systems in-
creases and the lower one decreases as the bubbles approach
each other. However, as shown in the present paper, by in-
troducing one more bubble whose monopole �i.e., decou-
pled� resonance frequency crosses with one of the resonance
frequencies of a double-bubble system, one can observe the
avoided crossing of the resonance frequencies when all three
bubbles are coupled.

In Sec. IV, we examine the phase properties of the three
coupled bubbles to show that a state exchange actually oc-
curred between the bubbles in the avoided crossing region.
In this effort, the notion of a transition frequency plays an
important role. The transition frequencies introduced in Refs.
�16,17� are characteristic frequencies of acoustically coupled
bubbles, around which the oscillation phase of bubbles in-
verts, e.g., from in phase to out of phase with the driving
sound. It was proved in Ref. �17� that a bubble in an
N-bubble system has up to 2N−1 transition frequencies, only
N ones of which correspond to the resonance frequencies
of the system. That is, observing the transition frequencies
allows us to obtain richer insight into the phase properties
than that obtained by only observing the resonance frequen-
cies. This notion has already been exploited as a powerful
tool to understand the sign reversal of the secondary
Bjerknes force �18,19� in which the oscillation phases play
a crucial role. Using this notion and observing directly the
oscillation phases, we show that the coupled bubbles ex-
change their oscillation states through the avoided crossing
and state exchange takes place at the separation distances
where an avoided crossing resonance frequency crosses with
a transition frequency that is not a resonance frequency. The
present findings appear to reveal a taste of bubbles’ hidden
complexity.

Section V summarizes this paper, and the Appendixes
present additional remarks.*Electronic address: ida@koma.jaeri.go.jp
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II. COUPLED OSCILLATOR MODEL, RESONANCE
FREQUENCY, AND TRANSITION FREQUENCY

The theoretical model used in the present study is a forced
oscillator model in which N harmonic oscillators are coupled
��16,17� and references therein�:

ëi + �i0
2 ei + �iėi = −

pex

�Ri0
−

1

Ri0
�

j=1,j�i

N
Rj0

2

Dij
ëj

for i = 1,2, . . . ,N , �1�

where N corresponds to the number of bubbles, Ri0 is the
equilibrium radius of bubble i, ei is the deviation of radius
assumed as �ei��Ri0, �i0 is the monopole �angular� reso-
nance frequency of bubble i, defined as

�i0 =�3�iP0 + �3�i − 1�2�/Ri0

�Ri0
2 , �2�

�i is the damping factor, the overdots denote the time deri-
vation, pex is the pressure of the external sound, � is the
density of the surrounding liquid, Dij�=Dji� is the separation
distance between the centers of bubbles i and j, �i is the
polytropic exponent of the gas inside the bubbles, P0 is the
static pressure, and � is the surface tension. In this linear
model, the following assumptions are made: the surrounding
liquid is incompressible, the sound amplitude is sufficiently
low, the separation distances are much larger than the
bubbles’ radii, and the shape deformation of the bubbles is
negligible. The last term of Eq. �1�, representing the pres-
sures of the sounds that the neighboring bubbles emit, de-
scribes the acoustic coupling between the bubbles. As in the
double-bubble case �20�, this model may be assumed to be of
third order with respect to the inverse of the separation dis-
tances �i.e., the truncated terms are of fourth or higher order�;
see Appendix A.

Using this model with N=3, a matrix equation for deter-
mining the amplitudes and phases of the radial oscillations is
derived. Assuming pex=−Pa exp�i�t� and ei=�i exp�i�t�
with Pa being a positive constant, � being the driving �an-
gular� frequency, and �i being a complex amplitude, we have

A��1

�2

�3
	 = −

Pa

�
I , �3�

where A is a 3	3 matrix whose elements ai,j�i , j=1,2 ,3�
are defined as

ai,j 
 �Ri0��X − �i0
2 � − i��i� for i = j ,

Rj0
2

Dij
X otherwise, � �4�

with

X 
 �2 �5�

and I= �1,1 ,1�T. We should note here that essentially the
same matrix equations can be found in previous papers �e.g.,
�17,21,22��. The solution of Eq. �3� is represented as

��1

�2

�3
	 = −

Pa

�
A−1I = −

Pa

�

�A�*CI

�A�*�A�
, �6�

where �A� and C are the determinant and the cofactor matrix
of A, respectively, and �A�* is the complex conjugate of �A�.
We used here an expression in which the denominator is real.

The eigenfrequencies of the system are determined by

�A� = 0, �7�

which is a cubic equation in terms of X. For �i0, the roots
of this equation are equivalent to the resonance frequencies
of the system. The transition frequencies of bubble i, defined
as the driving frequencies at which the phase difference be-
tween bubble i and the driving sound is 
 /2 �or 3
 /2�
�16–18�, are determined by

Re��i� = 0, �8�

where

��1

�2

�3
	 
 �A�*CI . �9�

�See Appendix B for the concrete forms of �A� and CI.� From
the mathematical proof given in Ref. �17�, one knows that
Eq. �8� is a fifth-order polynomial in terms of X, meaning
that the bubbles may have up to five transition frequencies.

The phase delay of bubble i, denoted by �i, measured
from the phase of the driving sound is determined using the
atan2�y ,x� function in the C language, which returns
tan−1�y /x�� �−
 ,
�, as

�i = �i if i � 0,

i + 2
 otherwise,
�

with
i = atan2„− Im��i�,Re��i�… .

The next section shows that in certain cases an avoided
crossing is observed in the solution of Eq. �7�. In the discus-
sion, to obtain real eigenfrequencies that correspond to the
resonance frequencies of the triple-bubble system for weak
damping, we for the moment assume �i0 �but �i�0�. Un-
der this assumption, one obtains

Im��A��  0 , �10�

�A�  �A�*, �11�

and
�i  Re��i� . �12�

The influences of the damping effect on the phase properties
are briefly discussed in Sec. IV.

III. AVOIDED CROSSINGS OF RESONANCE
FREQUENCIES

To begin with, a double-bubble system is briefly reconsid-
ered to confirm that no avoided crossings are observed in the
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resonance frequencies of the system as functions of the sepa-
ration distance. The solid lines in Fig. 1 indicate the reso-
nance frequencies of two coupled bubbles �bubbles 1 and 2�
of �R10,R20�= �50 �m,51 �m� as functions of l12
=D12/ �R10+R20�. The other parameters are set to �
=1000 kg/m3, �i=1.4�i=1,2 ,3�, P0=1 atm, and �
=0.0728 N/m. As has been proved theoretically
�16,20,23,24�, two resonance �or natural� frequencies appear
in this system, each of which, for D12→�, converges to the
monopole resonance frequency of a bubble. The higher reso-
nance frequency increases and the lower decreases as the
separation distance decreases. It is therefore obvious that
avoided crossings cannot occur.

Here we introduce one more bubble into the system. The
dashed line displayed in Fig. 1 denotes the monopole reso-
nance frequency of the introduced bubble, bubble 3, whose
radius R30=51.5 �m. Note that this resonance frequency
crosses with a resonance frequency of the double-bubble sys-
tem. This crossing, as shown immediately, triggers an
avoided crossing when the third bubble is coupled with the
double-bubble system.

Figure 2 shows the resonance frequencies in the case
where all three bubbles are coupled. The separation distances
are set to D12= l12�R10+R20�, D23= l23�R20+R30�, and D31

=D12+D23; that is, the bubbles are arranged in line �see Fig.
3�a��. Here the nondimensional quantities l12 and l23 are used
as the system parameters. Figures 2�a�–2�c� show the results
for l23=100 �25�, 50, and 20, respectively. In the figures, an
avoided crossing is clearly seen that takes place around the
point at which the two decoupled resonance frequencies
cross. The line of the resonance frequency originating with
bubble 3 is divided into two parts, and each of them connects
smoothly, like blending, with the curve of a resonance fre-

quency of the double-bubble system, also divided into two
parts. As bubble 3 comes closer to the others, the avoided
crossing becomes broader and the origin of each resonance
frequency becomes increasingly unclear.

An avoided crossing is also observed when bubble 3 is
smaller than the others. Figure 4 shows the resonance fre-
quencies when R30=49.5 �m. Here the bubbles are arranged
as illustrated in Fig. 3�b�. If bubble 3 is so large or so small
that its monopole resonance frequency does not cross with a
resonance frequency of the double-bubble system, no distinct

FIG. 1. Resonance frequencies �res �rad/s� of two coupled
bubbles for �i0 normalized by �10 �rad/s�, as functions of the
normalized separation distance l12. The dashed line denotes the
monopole resonance frequency of a bubble that will be coupled
with the former two bubbles in the next example.

FIG. 2. Resonance frequencies �res �rad/s� of three coupled
bubbles for �i0 normalized by �10 �rad/s�, as functions of the
normalized separation distance l12. �a�, �b�, and �c� are for l23

=100, 50, and 20, respectively. The dashed lines denote the reso-
nance frequencies when bubble 3 is decoupled.

FIG. 3. Arrangements of bubbles in the cases where bubble 3 is
larger �a� and smaller �b� than the other two bubbles.
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avoided crossing is observed, though this situation is not
shown here.

IV. STATE EXCHANGE IN THE AVOIDED CROSSING
REGION

To manifest a state exchange like that which the coupled
bubbles experience through the avoided crossing, we exam-
ined the oscillation phases of the bubbles. In bubble dynam-
ics, the phase of radial oscillation plays important roles
in many situations, including acoustic levitation �26–28�,
bubble-bubble interaction �18�, and multibubble sonolumi-
nescence �29�, and hence an accurate understanding of it is
crucial. In fact, by carefully examining the oscillation phases
of two coupled bubbles for weak driving, we have recently
succeeded in presenting a novel interpretation, which may
be more accurate than previous ones, of the sign reversal
of the secondary Bjerknes force �18,19�, a paradoxical phe-
nomenon that is considered to be the cause of the stable
structure formation of bubbles in a weak acoustic field
�24,30�. In that discussion, it was suggested that the transi-
tion frequencies seem to be essential components for gaining
an accurate understanding of the phenomenon, since the sign
reversal takes place at the transition frequencies that cannot
be obtained by resonance-frequency analysis. In the present
paper, we show by examining the oscillation phases that
the bubbles exchange their oscillation states through the
avoided crossing. As shown later, the point at which the state
exchange occurs can be clearly detected by observing the
transition frequencies.

Figure 5 shows the transition frequencies for
�R10,R20,R30�= �50 �m,51 �m,51.5 �m� with l23=20. The

thick lines denote the transition frequencies that correspond
to the resonance frequencies already shown in Fig. 2�c�. As
expected from the mathematical proof presented in �17�, the
bubbles have up to five transition frequencies, all of which
invert the oscillation phase of the corresponding bubble. It is
worth noting that in each panel of Fig. 5 the second-highest
resonance frequency �denoted below by �2nd� crosses once
with a transition frequency in the avoided crossing region.
Such crossings have not been found in double-bubble sys-
tems �16,18�. In the following discussion, we focus our at-
tention on the phase properties of the bubbles in this region
to elucidate what happens around the intersecting points.

The phase delays �i for different l12 as functions of � /�10
are shown by the solid lines in Fig. 6. In the computation
of �i, we used very small but nonzero �i to obtain continuous
results. Figures 6�a,b� and 6�c,d�, respectively, show �i
for l12 smaller and larger than the intersecting point l12
= lint�8.89�. Here, we only displayed �i in the frequency
range around the two avoided crossing resonance frequen-
cies. The vertical dotted lines indicate the two lowest reso-
nance frequencies. As in double-bubble cases �18,19�, at the
resonance frequencies the phase delays of all bubbles shift
simultaneously by +
, whereas at the remaining transition
frequencies only one phase delay shifts by −
.

The �i curves, as can be clearly seen in the figures, have
different convexities on different sides of the intersecting
point. For l12 smaller than lint, at �2nd, �1 and �2 shift from

 to 2
 but �3 shifts from 0 to 
 as � increases. For l12
larger than lint, on the other hand, an opposite tendency is

FIG. 4. Same as Fig. 2, but bubble 3 is smaller than the others.
The bubbles are aligned as shown in Fig. 3�b�. FIG. 5. Transition frequencies �tr �rad/s� of three coupled

bubbles for �i0 with l23=20 normalized by �10 �rad/s�, as func-
tions of the normalized separation distance l12. �tri denotes the tran-
sition frequencies of bubble i.
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seen: �1 and �2 shift from 0 to 
 but �3 shifts from 
 to 2
.
That is, a kind of state exchange takes place between bubble
3 and the other two bubbles at the intersecting point.

Regarding the relationship between the state exchange
and the phase properties, in the frequency range around �2nd,
bubble 3 oscillates out of phase with the other bubbles re-
gardless of whether l12� lint or l12� lint, although the indi-
vidual phase delays experience rapid shifts at �2nd. This
means that the state exchange cannot be perceived accurately
by observing whether the bubbles oscillate in phase or out of
phase with each other or by observing the sign of the sec-
ondary Bjerknes force, which is determined by the cosine of
the phase difference between two bubbles �31,32�. Just the
individual phase delays �or transition frequencies� should be
examined.

In the �i curves, we can find several similarities with
double-bubble cases. Bubbles 1 and 2, or bubble 3, have a
phase delay greater than 
 in the frequency range from �2nd
to a certain higher frequency �equal to the next-higher tran-
sition frequency of the corresponding bubble�. A similar ob-
servation can be found for double-bubble systems �18,19�. In
Ref. �18� we discovered and elucidated that such a large
phase delay can appear when two bubbles interact with each
other through sound. In the double-bubble case, the larger

one of the two bubbles has a phase delay greater than 
 in
the frequency range between the higher of two resonance
frequencies and the highest of the transition frequencies of
the bubble. We can, for a wider frequency range, also find a
similarity between the double- and triple-bubble cases. In the
frequency range � /�10�0.995, the profiles of �1 and �2 for
l12� lint and that of �3 for l12� lint are very similar to the
profile of the phase delay of the larger bubble in a double-
bubble system; those phase delays first exhibit two sharp
rises and then one sharp fall as � increases. Also, the profiles
of the remaining phase delays are very similar to that of the
phase delay of the smaller bubble in a double-bubble system,
exhibiting one sharp rise, one sharp fall, and then one sharp
rise. This seems to indicate that in the frequency range con-
sidered, for l12� lint bubbles 1 and 2 act as “larger bubbles”
while bubble 3 acts as a “smaller bubble,” but for l12� lint
each bubble acts in the opposite way; that is, the physical
roles that the bubbles play are exchanged through the
avoided crossing. This observation could also be interpreted
as a result of the change of a physical meaning of �2nd. As
illustrated in Fig. 2, �2nd is a hybrid of two resonance fre-
quencies having different origins. We assume here that the
origin, or the principal origin, of each avoided crossing reso-
nance frequency is switched at lint. This assumption allows

FIG. 6. Phase delays �i �rad� normalized by 

as functions of � /�10 for different l12 ��a�, �b� for
l12� lint, �c�, �d� for l12� lint�. The solid and the
dashed curves denote �i for negligible and non-
negligible damping, respectively, and the vertical
dotted lines indicate the two lowest resonance
frequencies �the higher is thus the second-highest
resonance frequency �2nd�.
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us to consider that �2nd for l12� lint, for example, is the
resonance frequency whose principal origin is bubble 3.
This suggestion is consistent, not only with the observation
for large l23 where the origin of each resonance frequency is
relatively clear, but also with the above speculation that
bubbles 3 acts as a “smaller bubble” for l12� lint, because
�2nd is higher than the lowest resonance frequency that
is one of the two avoided crossing resonance frequencies.
The observation for l12� lint can be interpreted in a similar
manner.

Last, we briefly examine how the damping affects the
state exchange. For the damping coefficient, we use the value
for viscous damping,

�i =
4�

�Ri0
2 , �13�

with viscosity �=1.002	10−3 kg/ �m s�. The dashed curves
in Fig. 6 show the phase delays in the damped case. The
viscous effect smoothes the phase profiles, but the convexity
of the curves is not altered from that for �i0, as in the
double-bubble cases �18,19�. The state exchange is clearly
detected even in the present case. The qualitative tendencies
of the phase delays are not changed by the viscous damping.

V. CONCLUSION

We have shown theoretically that avoided crossings can
be observed in the resonance frequencies of acoustically
coupled gas bubbles plotted as functions of the separation
distances. A state exchange taking place between the bubbles
in the avoided crossing region has been clearly exhibited by
examining the oscillation phases and transition frequencies
of the coupled bubbles. We have clarified that the state ex-
change is perceived by observing the individual oscillation
phases of the bubbles, not by observing whether the bubbles
oscillate in phase or out of phase with each other. Since the
individual phase �or more properly, the phase difference be-
tween a bubble and the external sound� determines the sign
of the primarily Bjerknes force �26–28� acting on the corre-
sponding bubble, this state exchange should play a role in,
e.g., acoustic levitation using the force. The results of this
study suggest that the transition frequencies introduced in
Ref. �16� can be a useful tool for detecting the state ex-
change, which takes place at the separation distance where
an avoided crossing resonance frequency crosses with a tran-
sition frequency that is not a resonance frequency. Though
we only considered triple-bubble systems in a linear arrange-
ment, extensions to systems containing a larger number of
bubbles and in different arrangements may be straightfor-
ward. Also, nonlinear effects on the avoided crossings and
oscillation phases could be examined using nonlinear models
�20,21,29,33�. As with other physical systems, the avoided
crossings in acoustically coupled bubbles might be real.
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APPENDIX A

High-order nonlinear models for N pulsating bubbles in a
liquid have been proposed, in which terms proportional to
Dij

−k�k�2� appear that involve the translational velocities of
the bubbles �21,33�. In Ref. �33�, for example, Doinikov de-
rived the following model equation for N spherical bubbles:

RiR̈i +
3

2
Ṙi

2 −
Pi

�
=

ṗi
2

4
− �

j=1,j�i

N �Rj
2R̈j + 2RjṘj

2

Dij
+ Hij� ,

�A1�

1

3
Rip̈i + Ṙiṗi =

Fi

2
�Ri
2 + �

j=1,j�i

N �−
1

Dij
2 �RiRj

2R̈j + 2RiRjṘj
2

+ ṘiṘjRj
2�tij −

Rj
2

2Dij
3 �RiRjp̈ j + �ṘiRj + 5RiṘj�ṗ j�

+
3Rj

2

2Dij
3 �tij · �RiRjp̈ j + �ṘiRj + 5RiṘj�ṗ j��tij� ,

�A2�

with

Hij 
 −
Rj

2

2Dij
2 �Rjp̈ j + Ṙjṗi + 5Ṙjṗ j� · tij −

Rj
3

4Dij
3 �ṗ j · �ṗi + 2ṗ j�

− 3�ṗ j · tij��tij · �ṗi + 2ṗ j��� , �A3�

tij 

p j − pi

Dij
,

Pi 
 �P0 +
2�

Ri0
��Ri0

Ri
�3�

−
2�

Ri
−

4�Ṙi

Ri
− P0 − pex,

�A4�

where Ri and pi are the instantaneous radius and position
vector, respectively, of bubble i ,Fi denotes external forces on
bubble i , tij is a unit vector, � is the specific heat ratio of the
gas inside the bubbles, and � is the viscosity. Here we
showed only the incompressible version, though Doinikov
also derived a model for bubbles in a compressible liquid.
Equations �A1� and �A2� represent the volume oscillation of
bubble i and its translational motion, respectively. The linear
coupled oscillator model used in the present study is recov-
ered from Eq. �A1� by truncating the high-order terms Hij
and assuming weak driving and �=�i.

Since the velocity field forming around a pulsating sphere
is proportional to 1/r2, where r is the distance measured
from the center of the sphere, the truncated terms Hij, which
are composed of the translational velocities ṗi, might be con-
sidered to be of fourth, or higher, order with respect to the
inverse of the separation distances. This speculation is con-
sistent with the suggestion by Harkin et al. for double-bubble
systems �20�.
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Equation �A1� further suggests that under the assumption
of ṗi0 one cannot construct a linear model that has higher-
order accuracy than that of Eq. �1�, since this assumption
makes the high-order terms inaccurate.

APPENDIX B

For the convenience of readers, we show the concrete
forms of �A� and CI:

�A�
R10R20R30

= L1L2L3 + s21s32s13 + s12s23s31

− L1�M2M3 + s23s32� − L2�M3M1 + s31s13�

− L3�M1M2 + s12s21� + i�M1M2M3

− M1�L2L3 − s23s32� − M2�L3L1 − s31s13�

− M3�L1L2 − s12s21�� , �B1�

CI = �c1,c2,c3�T,

ci

Rj0Rk0
= �Lj − sij��Lk − sik� + �sij − skj��sjk − sik� − MjMk

+ i�Mj�sik − Lk� + Mk�sij − Lj��

for �i, j,k� = �1,2,3�, �2,3,1�, or �3,1,2� , �B2�

where

Li 
 X − �i0
2 ,

Mi 
 ��i,

sij 

Rj0

Dij
X .

For �i0, Eqs. �B1� and �B2� reduce, respectively, to

�A�
R10R20R30

 L1L2L3 + s21s32s13 + s12s23s31 − L1s23s32

− L2s31s13 − L3s12s21, �B3�

ci

Rj0Rk0
 �Lj − sij��Lk − sik� + �sij − skj��sjk − sik� . �B4�

Equation �B3� and the real part of Eq. �B1� are cubic func-
tions, and Eq. �B4� and the real part of Eq. �B2� are quadratic
functions in terms of X. The imaginary parts of Eqs. �B1� and
�B2� can be written in a form of �f�X�, where f is quadratic
in Eq. �B1� and linear in Eq. �B2�. �As proved theoretically
in Ref. �17�, the imaginary parts are composed of terms of
odd orders with respect to M which are proportional to �Xn

with n being a positive integer.�

�1� In the fields of vibration engineering and some others, avoided
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